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Abstract

Knowledge of the global magnetic field distribution and its evolution on the Sun’s surface is crucial for modeling
the coronal magnetic field, understanding the solar wind dynamics, computing the heliospheric open flux
distribution, and predicting the solar cycle strength. As the far side of the Sun cannot be observed directly and
high-latitude observations always suffer from projection effects, we often rely on surface flux transport (SFT)
simulations to model the long-term global magnetic field distribution. Meridional circulation, the large-scale north–
south component of the surface flow profile, is one of the key components of the SFT simulation that requires
further constraints near high latitudes. Prediction of the photospheric magnetic field distribution requires
knowledge of the flow profile in the future, which demands reconstruction of that same flow at the current time so
that it can be estimated at a later time. By performing Observing System Simulation Experiments, we demonstrate
how the ensemble Kalman filter technique, when used with an SFT model, can be utilized to make “posterior”
estimates of flow profiles into the future that can be used to drive the model forward to forecast the photospheric
magnetic field distribution.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar meridional circulation (1874)

1. Introduction

Magnetic fields on the Sun drive a diverse range of phenomena
that span different timescales. Solar flares, coronal mass ejections,
and radiation from energetic particles influence our space
environment in the short term, whereas the emergence of sunspots
and magnetic flux transport on the photosphere control the solar
magnetic activity cycle that covers a longer timescale. Overall,
these events impact Earth’s space environment, affecting satellite
operations and telecommunication, and contribute to space weather
variations. Knowledge of the surface magnetic field distribution
and evolution is crucial for predicting both short-term space
weather and long-term climate variations. The Sun’s surface
magnetic field distribution is extremely important and is used in
multiple applications as a boundary condition for modeling coronal
magnetic fields, an initial condition for solar wind models, as well
as to compute the heliospheric open solar flux distribution. Polar
magnetic field evolution is also closely linked to the behavior of
the solar cycle. It allows us to make predictions about the
amplitude and timing of solar cycles (L. Upton & D. H. Hathaway
2014; P. Bhowmik & D. Nandy 2018; D. Nandy 2021; B. K. Jha
& L. A. Upton 2024; S. Pal & D. Nandy 2024), which have
implications on long-term climate variability.

The solar dynamo is essentially an interplay between the
poloidal and toroidal components of the Sun’s magnetic field.
During a solar activity minimum, the global magnetic field is
dominated by the poloidal component. The solar differential
rotation (i.e., the longitudinal component of the large-scale
flow) stretches this poloidal field longitudinally to generate the

toroidal field component in the interior. E. N. Parker (1955)
suggests that due to magnetic buoyancy, these amplified
toroidal flux ropes manifest as bipolar magnetic regions
(BMRs) on the surface. While the toroidal flux rope rises
through the solar convection zone, Coriolis forces typically tilt
it such that one of the sunspots emerges leading in longitude
and closer to the equator while the other one is behind
(following) in longitude and closer to the pole of the respective
hemisphere (S. D’Silva & A. R. Choudhuri 1993). Near the
Sun’s equator, the leading BMR polarities of two opposite
hemispheres cancel each other, and the remaining magnetic
flux drifts toward the respective poles via large-scale
meridional flows (north–south component of the large-scale
flow) and diffusion.
In order to study this flux transport process, we require

global magnetic field observations spanning all the longitudes
and latitudes. However, current ground- and space-based
observing facilities are largely restricted to the Sun–Earth line,
which limits our observation window to one-half of the Sun’s
surface. Such observations are not reliable near high latitudes
and limb extrema due to high projection effects. To address this
issue, we often utilize the surface flux transport (SFT) model,
which solves the radial component of the magnetic induction
equation (Equation (1)) with imposed large-scale flow para-
meters, surface magnetic diffusivity, and observed BMR
properties (more details in the review paper by A. R. Yeates
et al. 2023). Some of the SFT models also use data assimilation
(DA) to incorporate the observed magnetic flux to generate a
global photospheric magnetic field map. In order to accurately
model the magnetic flux transport we require an observation-
ally constrained description of global flow parameters, i.e.,
differential rotation and meridional circulation as well as
magnetic diffusivity. Meridional flow has been observed in the
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photosphere and within the upper convection zone, spanning
from the equatorial region to approximately 60° latitude in each
hemisphere (R. W. Komm et al. 1993; D. H. Hathaway &
L. Rightmire 2010; S. S. Mahajan et al. 2021). Nevertheless,
comprehensive knowledge regarding the flow speed, profile,
and temporal fluctuations over multiple solar cycles on the
surface and within the deeper convection zone remains elusive
based on current observational data owing in part to the
increased uncertainty near the polar latitudes due to projection
effects. Recently, S. S. Mahajan et al. (2023) analyzed
variations in the global meridional flow pattern for solar cycle
24 using the time–distance helioseismology technique utilizing
data from Helioseismic Magnetic Imager (HMI; P. H. Scherrer
et al. 2012a; J. Schou et al. 2012b) on board the Solar
Dynamics Observatory and found that the meridional flow does
show a small variation on the order of 2 m s−1 far away from
active regions and much larger variation close to active regions
due to inflows. The study, however, is still limited to 62°.5
latitude due to projection effects.

Despite these limitations, SFT modeling has proven
remarkably effective in calculating the distribution of photo-
spheric magnetic flux. Both large-scale surface-flow compo-
nents, i.e., differential rotation and meridional circulation,
primarily show latitude-dependent variation. SFT simulations
are sensitive to parameterized flow profiles. Modeled surface
magnetic field distribution can be calibrated to the observations
considering the available observations of the polar field or its
proxy. In order to achieve this, different SFT models consider
slightly different yet solar-cycle-independent meridional flow
profiles and magnetic diffusivity to mimic the flux cancellation
and transport process. This raises the question, is it possible to
infer the parameter value, e.g., the peak flow speed of an
assumed meridional flow profile, using the magnetic field
observations? In this paper, we build an Observation System
Simulation Experiment (OSSE) system with the SFT model,
which will guide us further in building a model using observed
magnetic fields to infer the different physical variables (e.g.,
flow parameters, magnetic diffusivity).

Ensemble Kalman filter (EnKF) data assimilation is ideal for
our purpose. The EnKF computational technique uses observa-
tions sequentially obtained at a current time together with
associated “prior knowledge” from the numerical computation
of physical models to provide Bayesian estimates of the
“posterior” states of the system (model+observations) while
accounting for uncertainties in the observations and using
physical model outputs of the evolved states. Although the
motivation for the development of such a technique arose from
the need for short-to-medium range weather forecasting in
geophysics (G. Evensen 1994), now this technique has been
used extensively in many scientific fields such as Earth upper-
atmosphere models (T. Matsuo et al. 2013; N. M. Pedatella
et al. 2013), weather prediction models (S. Ha et al. 2017;
I. Hoteit et al. 2021), and ocean circulation models (Y. Chen
et al. 2022). EnKF is used for estimating or constraining
otherwise unknown parameters of a physical model, as well as
producing better forecasts that are updated through the most
recent observations while integrating the model forward in time
rather than deriving from pure model outputs. The filtering, in
brief, is a statistical perspective for obtaining the posterior
distributions of a system’s states and their uncertainties at the
current time based on all accumulated observations so far. The
Kalman filter estimates the state of a system using two steps: (i)

estimating the state and uncertainty in that state, which are
adjusted to newly available observations, and (ii) forecasting
the updated state and uncertainty by propagating them forward
in time. A model, such as Gaussian error, is used to obtain the
first guess of the states, and then from the error covariance
matrices of the observations and the theoretically generated
observations from the first guesses of the states, the corrections
to the first guess of the state are estimated. The process of
combining the first guesses in an ensemble of models with
observations to derive the new states is essentially the EnKF
data assimilation. A detailed review can be found in G. Even-
sen (2003).
Numerous studies have explored the application of data

assimilation in solar physics (A. S. Brun 2007); for example,
the reconstruction of dynamic solar corona using ensemble
Kalman filtering and tomography methods with observations
(M. D. Butala et al. 2010), forecasting solar cycle behavior by
combining real observations with a reduced α–Ω dynamo
model (I. Kitiashvili & A. G. Kosovichev 2008), using the
four-dimensional variational method and a cellular-automaton-
based avalanche model to predict simulated solar-flare data
(E. Bélanger et al. 2007), and generating ensemble members of
the photospheric magnetic field distribution with localized
EnKF techniques driven by available observations (C. N. Arge
et al. 2010; K. S. Hickmann et al. 2015). L. Jouve et al. (2011)
developed a variational data assimilation framework based on a
solar α–Ω dynamo model and validated it through synthetic
data. A. Svedin et al. (2013) showed how a three-dimensional
variational data assimilation methodology can be utilized to
obtain accurate model estimates given a set of observations.
A. Fournier et al. (2013) employed the EnKF framework in a
three-dimensional, convection-driven geodynamo model, using
surface poloidal magnetic fields for full-state estimation.
M. Dikpati et al. (2014, 2016) utilized EnKF sequential data
assimilation to reconstruct the time variations in the meridional
flow speed over multiple solar cycles, utilizing poloidal and
toroidal magnetic fields as observational data in a two-
dimensional kinematic Babcok–Leighton solar dynamo model.
Utilizing EnKF data assimilation with a one-dimensional SFT

model, we aim to reconstruct the parameters of the meridional
flow profile. With statistical multidimensional regression
analysis using a Bayesian approach, we can compare the
magnetic field observations to the model-generated magnetic
field for a random initial guess of the meridional peak flow
speed. Subsequently, the model parameter (peak flow speed) is
adjusted to minimize the deviation between the observed and
modeled magnetic field, thereby eventually converging at a
parameter value inspired by direct observations.
We build a DA experiment with a 1D SFT model to study

how sensitive the reconstruction of the peak meridional flow
speed is to different tunable DA parameters: (a) magnetic field
observations near high latitudes—how does the error in
reconstruction vary with increasing or decreasing the assimila-
tion interval? (b) possible error associated with the observations
—how well can the model parameter be reconstructed with
different values of error associated with the observations? In
the following sections, we describe our SFT model and
different cases for the reconstruction of the peak meridional
flow speed. In Section 2, we explain our SFT model and
mathematical formulation of the EnKF methodology, and
Section 3 describes our results. A comprehensive discussion
and summary of our study are presented in Section 4.

2
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2. Models

2.1. Surface Flux Transport Model

The SFT model is based on the idea that radial magnetic flux
on the solar surface is carried around by horizontal plasma flows
with no back reaction on these flows (R. B. Leighton 1964). This
can be modeled by solving the radial component of the magnetic
induction equation on the solar surface,

· ( ) ( )B

t
u B B S, 1r

h r r
2h¶

¶
+ =  +

where η denotes the effect of supergranular diffusion and uh
describes the imposed horizontal plasma flows, i.e., meridional
circulation and differential rotation. The supergranular diffusion
is assumed to be a constant quantity; hence it is placed outside of
the spatial derivative operator. Br(s, f, t) represents the large-
scale mean radial magnetic field defined on a sine-latitude
(s= sinl) and longitude (f) grid for the time step t. The source
terms, i.e., BMRs emerging on the solar surface, are denoted by
S(s, f, t). Since the evolution of the axial dipole moment
depends only on the longitude-averaged field (C. R. DeVore
et al. 1984; R. Cameron & M. Schüssler 2007; H. Iijima et al.
2017; K. Petrovay & M. Talafha 2019; A. R. Yeates 2020), we
simplify our SFT model by averaging the mean field over the
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where vs(s) denotes the meridional circulation and Re is the
solar radius. Meridional circulation is parameterized as

( ) ( ) ( )( )v s D s s1 . 3s u
p2 2= -

We can compute the axial dipole moment using the long-
itudinally averaged magnetic field as,

¯ ( ) ( )sB s dt dsDM
3

2
, . 4

1

1

ò=
-

A. R. Yeates (2020) introduced such a mathematical formula-
tion of the SFT model. We developed our numerical model
following A. R. Yeates (2020) in FORTRAN for this study. We
solve the model equations numerically using the finite-volume
method. We adopt their meridional flow profile shape of
p= 2.33 and use Du= 0.085 km s−1, which corresponds to a
meridional peak flow speed of v0= 30.7 m s−1. In the sine-
latitude grid, there are 180 grid points considered for our
simulation. The source terms are modeled as idealized BMRs
using the observed sunspot properties taken from the HMI
database spanning a time frame from 2010 June 17 to 2023
September 4 following the formalism provided by A. R. Yeates
(2020). Figure 1 shows the time–latitude distribution of
selected BMRs, where the color indicates the unsigned flux
magnitude and the size of the markers denotes the separation
between opposite polarities. There are 1643 BMRs identified
for incorporation into our SFT model. The BMR properties are
extracted from the hmi.sharp_cea_720s series available

through Joint Science Operations Center using the script
distributed by A. R. Yeates (2020). It is important to note that
all the BMR properties are considered at their maximum area
coverage during disk passage. Utilizing these properties we
model the source terms for our SFT model following the
algorithm described in the same paper. Our SFT model can be
accessed on GitHub5 with a copy archived to Zenodo:
doi:10.5281/zenodo.13831085 (S. Dash et al. 2024).
We evolve the SFT model for 14 yr to generate a butterfly

diagram of ( )B s t, . The initial condition for our simulation is
the magnetic field distribution for Carrington map 2097. For
our experiment, we used η= 450 km2 s−1 and v0= 30.7 m s−1

based on several trial runs, as these values best reproduce the
observed polar fields. An analogous butterfly diagram of Br is
plotted from HMI Carrington maps for comparison. Figure 2
shows the comparison between the HMI-observed radial
component of the surface magnetic field and the SFT-generated
butterfly diagram of the surface radial magnetic field. The
brown dashed line toward the right of Figure 2(b) indicates the
last BMR insertion into the SFT model. Beyond this line, the
model only shows the forward run of the SFT model without
new active regions.
It is important to note that for our DA experiment, the

numerical model must have “restart” functionality. This is
because the data assimilation modifies the model parameter
(peak meridional flow speed for our case) constrained by the
surface magnetic field observations at a user-defined assimila-
tion cadence. After each modification, the simulation is
restarted with the new value of peak meridional flow speed
for the next iteration of the assimilation window. We model the
restart functionality in our simulation and compare the resulting
magnetic field at random time frames to ensure the correctness
of magnetic fields at the last frame and continuation in the next
frame. Figure 2(b) denotes the uninterrupted SFT evolution for
14 yr (5111 days, considering the leap years). Panels (c), (d),
and (e) show partial SFT model evolution starting from 0 days,
1500 days, and 3500 days, respectively.
In order to check the magnetic field at the end of an SFT run

and the start of the next instance, the latitudinal variation in Br is
independently plotted and compared with the corresponding
time step of panel (b). The continuity in the butterfly diagram in
panels (c), (d), and (e) also indicates the evolution of surface
magnetic field distribution. The magnetic field profile and
amplitude at these iterations do not show a significant difference
when compared with the corresponding time step of panel (b),
which validates the restart functionality of our model. Now the
numerical model is ready to be coupled with the EnKF algorithm
to infer various model parameters.

2.2. Coupling the Ensemble Kalman Filter Algorithm with the
Surface Flux Transport Model

Data assimilation is performed by the EnKF as implemented
in the Data Assimilation Research Testbed (DART; J. Ander-
son et al. 2009, https://dart.ucar.edu). The algorithm operates
through a two-phase process comprising a prediction phase and
an update phase. During the prediction phase, the Kalman filter
generates estimates of the current state variables along with
their associated uncertainties. Then for the update phase, these
parameter estimates are used to compute the observed

5 https://github.com/sr-dash/SFT-1D
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quantities and the corresponding uncertainties. In an iterative
process, state variables are “nudged” closer to the true state that
is inspired by the observations. An OSSE designed with EnKF
in this context helps to estimate the potential value of state
variables guided by the simulated observations.

Here, we provide a concise description of the Kalman Filter
algorithm starting from a Bayesian formulation, as it applies
to our DA experiment. For a detailed and more generalized
mathematical derivation, readers can refer to M. Dikpati et al.
(2016). The surface flux transport process can be numerically
modeled by solving the equations of the SFT model
(Equation (2)) that require the prescription of meridional flow
(Equation (3)). One of the parameters in the presumed flow
profile is the maximum flow speed in both hemispheres,
which can be considered as our state variable (Du in
Equation (3)). One can use xi for the range of state variables
involved in modeling a physical system, where i is the index
of variable type and location in the range [1, n]. Here n
denotes the dimension of state space. Ideally, the state vector
(xt) can evolve in a time-dependent fashion that can be
expressed as

( ) ( )x x t, . 5t t 1= -

In data assimilation terminology, the physical SFT model is the
forward operator, whereas  is the “model,” which is a
random-walk operator that generates the prior flow speed from
prior time step t−1. In our case, the state vector xt is the peak
meridional flow speed (Du), which is time-independent.

For our experiment, we assume a prescribed meridional
flow profile (Equation (3)) that does not vary with time.
Using the vector notation, we can describe the state vector
x≡ x i and the corresponding observations y≡ y j, where the
index i denotes the state vector space that has a range [1, n]
and the index j shows the observations with a range [1, m].
As stated earlier, n is the dimension of the state space,
whereas m is the dimension of the observation space. While
reconstructing the time-independent flow speed by

assimilating data in the SFT model, the state vector
dimension is 1, i.e., n= 1 in our case. As per EnKF-DART
requirements, the observation space dimension will have to
be less than or equal to the dimension of the state vector.
Thus, m is also 1. In our OSSE, the state vector x i is inferred
from the observations y j at different assimilation steps. A
detailed description of the integration of SFT in the EnKF
framework is provided in Section 2.2.1.
For an assimilation time window mt, a set of observations y

i
t

are available that can be generated using OSSE. Usually mt can
vary with time and is much smaller than n. The prior estimates
of the set of observations can be generated by a forward
operator h(x, t) as,

( ) ( ) ( )y h x xt t, , , 60 0= + 

where the forward operator (h) and state variable (x) are
assumed to model the observations accurately and ò0 is the
uncertainty associated with the observations. For our DA
experiment, the SFT model equation (Equation (2)) is the
forward operator and meridional peak flow speed (v0) is the
state variable that can be expressed as Equation (3), which is
analogous to Equation (5). In our OSSE system, we choose the
value of the magnetic field at 60°N latitude to be the
observations (y0).
The uncertainty associated with the simulated system may be

due to (i) limitations of the forward operator or (ii) errors in the
initial conditions. In the EnKF experiment, we can only
estimate the type (ii) uncertainty. In the context of our SFT
model, the model equations are averaged over the longitude.
Hence, the impact of differential rotation on the flux transport
process is not modeled. We also assume that the magnetic flux
is only advected in response to the large-scale flow properties.
Such assumptions limit us from modeling the small-scale flux
distribution and the EnKF algorithm will not be able to model
the uncertainty associated with such assumptions. On the other

Figure 1. Time–latitude distribution of BMRs obtained from HMI observations. There are a total of 1643 BMRs identified at their maximum disk-passage area. The
color of the markers denotes the unsigned flux and size corresponds to the separation between opposite polarities.
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hand, we can estimate the errors associated with the initial
condition of the model, i.e., a synoptic map of magnetic field
distribution and properties of the BMRs used to generate the

source terms from the distribution of x in the ensemble. If xTr

is the true state, i.e., the true state variable, and xp is the prior
estimate of the state variable with EnKF (Equation 5), then the

Figure 2. Butterfly diagram of the surface radial magnetic field from observations and the SFT model, along with demonstrations of the “restart” functionality. Panel
(a) shows the HMI-observed butterfly diagram interpolated onto the SFT model resolution. A total of 14 yr of SFT model evolution is plotted in (b), where the brown
dashed line toward the right indicates the time beyond which no new BMRs are incorporated into the SFT model. In all the panels, the magnetic field saturates
at ±10 G. Panel (b) shows the uninterrupted SFT run for 14 yr, where the black dashed lines indicate the time stamps at which the computation is stopped and
restarted, the results of which are shown below. Panel (c) shows the SFT evolution from t = 0 to t = 1500 days. Panel (d) shows the SFT evolution from t = 1500 to
t = 3500 days. Panel (e) shows the SFT evolution from t = 3500 to t = 5111 days. EnKF data assimilation requires the numerical model to have restart functionality.
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error in the prior estimate (ò p) can be written as

( )x x . 7p p Tr= -

Similarly, the posterior state xa and the error (ò a) associated
with it can be computed by,

( )x x . 8a a Tr= -

Here the index a denotes quantities of the analysis states, i.e.,
the posterior states. In order to find the optimal xa, we require
observation () and model () error covariance matrices,

( ), 9T0 0=  

( ), 10p pT=  

where the bar denotes the statistical average and T indicates the
transpose of the corresponding column vector. We also
evaluate the estimated analysis error covariance (),

( ). 11a aT=  

Now with this system of prior and analysis variables, we pose
the question: What would be the most likely state vector xa and
its estimated variance ò a, considering the prior state vector xp

and available observations y0? In probability notation, P(xa|xp,
y0) is the probability of occurrence of xa provided xp and y0 are
known. According to Bayes’ theorem, the probability distribu-
tion of x given y0 is

( ∣ ) ( ∣ ) ( )
( )

( )x y
y x x

y
P

P P

P
. 120

0

0
=

Assuming the state vectors (x) are drawn from a multivariate
Gaussian distribution, prior state P(x) can be written as,

( )
( ) ∣ ∣

( )∣( ) ( ) ∣xP e
1

2
, 13x x x x

1 2 1

p T p1
2

1

p
=

-
- - --




and P(y0|x) as,

( ∣ )
( ) ∣ ∣

( )( ( )) ( ( )) ∣y xP e
1

2
. 14y h x y h x0

1 2 1

T1
2

0 1 0

p
=

-
- - --




Substituting Equations (13) and (14) in Equation (12), we can
reduce the problem into finding an optimum distribution of x. By
linearizing h around xp, we can calculate an extremum of x as,

( ) [ ( )] ( )x x h h h y h x . 15a p T T p1 1 1 0= + + -- - -  

This is the expression for the Kalman Filter. A more detailed
mathematical description in a solar context is provided in
M. Dikpati et al. (2016). For EnKF, the posterior state/update is
constructed by creating an ensemble distribution of state
variables from a multivariate Gaussian distribution and using
these prior states to compute the ensemble of posterior states. If
the errors associated with the observations are not expected to be
correlated at different time steps, we can employ the sequential
Bayesian analysis to accelerate the computation of EnKF. It is
worthy of note that sequential Bayesian analysis is a statistical
method used for updating the probability estimate of a state
vector as new observations become available. After each update,
the new posterior probability becomes the prior probability for
the next iteration of the analysis. This is known as the ensemble
adjustment Kalman filter proposed by J. L. Anderson (2001). We
have used this variant of EnKF for our experiment.

2.2.1. Applying Ensemble Kalman Filter Data Assimilation to the
Surface Flux Transport Model

In the EnKF framework, the state vector (xt in Equation (5))
prescribes the meridional flow in our SFT model where the
peak flow speed (defined by Equation (3)) is one of the model
parameters. In the following sections, we will be performing
DA experiments to infer the value of peak meridional flow
speed v0, which can be calculated from Du following
A. R. Yeates (2020),

( ) ( )( )v D p p1 . 16u
p p

0
2 1 2=  + - +

For Du= 0.085 km s−1 and p= 2.33, the peak meridional flow
speed is v0= 30.7 m s−1. With our state vector prescription, the
observations (y0 in Equation (6)), i.e., the magnetic field, are
computed using the forward operator (h(x, t) in Equation (6)).
A perfect SFT model is computed that provides the values of
magnetic fields at all latitudes for the above flow parameters. In
the data assimilation framework, an ensemble of the initial
guesses for the state vectors is generated and is used to evolve
the SFT model to the next iteration. Since the initial guesses for
the state vectors are drawn from a multivariate Gaussian
distribution, the resulting observations do not necessarily
generate identical observations as the perfect model. In the
next iteration, the state vectors are adjusted according to Bayes’
theorem (Equation (12)). This iterative process is continued
until the end of the SFT evolution. In this iterative process, the
state vector is adjusted according to the observations as
depicted by the illustration in Figure 3.

Figure 3. The illustration shows how the surface flux transport model is
coupled to the ensemble Kalman filter data assimilation algorithm. Initially, an
ensemble of state vectors, i.e., the peak meridional flow speed is generated and
utilized in the SFT model evolution to calculate the corresponding
observations, i.e., the magnetic fields. In the next iteration, the state vectors
were computed using the EnKF algorithm, where the state vectors were
“nudged” toward the true state. The process drives the resulting observations
toward the perfect model. The iteration time step is decided by the assimilation
cadence of the DA experiment. This iterative process is continued for the whole
time duration of the global SFT calculations; e.g., if the global SFT simulation
is set to evolve for 300 days, for an assimilation cadence of 30 days the
iteration N would be 100.
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3. Results

Using the SFT model described in Section 2.1, we evolve the
surface radial magnetic field for about 14 yr using a peak
meridional flow speed v0= 30.7 m s−1. The resulting butterfly
diagram is compared to the observations in Figure 2. In order to
test our model output, we compare the calculated axial dipole
moment (DM; Equation (4)) with the observations in Figure 4.
The Pearson correlation coefficient between these two time
series is 0.97, which indicates that the SFT model output is
reasonable. For our current experiment, we choose the value of
the magnetic field at 60°N latitude, noting that the result of the
DA experiment does not depend on the location of the
reference magnetic field value. In principle, one can choose to
utilize the values of the magnetic field at all latitudes as their
true observations. However, this makes the setup computa-
tionally expensive due to increased dimensionality.

The resulting butterfly diagram from the SFT model
(Figure 2(b)) is used as our “true observations” for the data
assimilation experiment with a true state (peak meridional flow
speed) value of v0= 30.7 m s−1. In order to check the
sensitivity and robustness of the assimilation results we explore
variations in the: (a) assimilation cadence, (b) error associated
with the true observations, and (c) ensemble size. We define
our perfect model with a peak meridional flow speed of
v0= 30.7 m s−1. Depending upon the assimilation cadence, the
perfect model observations (i.e., the magnetic fields at 60°N
latitude) for the corresponding time step from the original SFT
model are considered for our DA experiment. For different
experiments with different ensemble sizes and error variances,
the perfect model calculations are performed with the same
parameters. Only the magnetic field at 60°N latitude generated
by the perfect model is used for computing the state vectors for
these different cases. Consequently, the state vectors are
“nudged” based only on observations sampled at that latitude
point. Under the current setup of EnKF data assimilation, each
experimental case takes approximately 45 minutes to complete
for an assimilation cadence of 60 days and an ensemble size of
20. Reconstruction of the state vector at multiple spatial
locations for a larger ensemble size would be more computa-
tionally demanding.

3.1. Impact of Different Assimilation Cadence on Data
Assimilation

Assimilation cadence is probably one of the most important
parameters in a data assimilation experiment. This corresponds
to a time after which the DA simulation is interrupted, the value
of the state vector is compared with the true states, and a
posterior state vector is created using Equation (15). The
ensemble size chosen for this study is 20 with an error variance
value of 10−6. Our SFT model has a time step of dt= 4 hr. We
run our DA experiment for assimilation cadences of 1, 10, 20,
30, 60, 100, 120, 150, 180, and 200 days. The choice of these
cadence values is arbitrary. For all model runs, the assimilation
cadence denotes the time interval after which the state vector
(i.e., the peak meridional flow speed) is modified and the
observation (i.e., the magnetic field) is sampled.
Figure 5(a) shows the true observations (value of the

magnetic field from the SFT model) in different colors.
Figure 5(b) indicates the reconstructed observations (value of
the magnetic field from the SFT model after the DA). The
initial deviation from the perfect model in this plot shows the
impact of the data assimilation experiment where the state
vector (peak meridional flow speed) is iteratively “nudged”
toward the perfect model. Figure 5(c) shows the evolution of
one of the state vectors (value of peak meridional flow speed)
from the ensemble. For all the cases, the baseline value of the
magnetic field and v0 is solid black. In some cases, we observe
a deviation from the true observations. To summarize, we show
the final mean value of the ensemble of state variables in
Figure 6. Here the markers denote the ensemble mean peak
meridional flow speed at the end of the DA experiment for
different assimilation cadence instances. For assimilation
cadences between 10 and 150 days, the reconstructed observa-
tions and corresponding peak meridional flow speed are close
to the true state values. We discuss the possible cause of the
spread from the true state for a few cases of high assimilation
cadence value within the plot in Section 4.
To explore the reason for deviations at low and high

assimilation cadences, we inspect the results for the case of
1 day, that is, we modify the ensemble of state vectors after
each day. In Figure 7 we plot the true observations (SFT
magnetic field at 60°N latitude), reconstructed observations,
and state variable (peak meridional flow speed) in panels (a),
(b), and (c), respectively. Initially, the state variable and the
reconstructed observations oscillate around the true state;
however, at later times they diverge drastically. It is apparent
that for such a high cadence of assimilation, the reconstructed
observations are not converging toward the true value at the
end of the simulation. This is commonly known as “ensemble
collapse,” which is discussed in Section 4.

3.2. Impact of Different Error Variance on Data Assimilation

Uncertainty associated with the modeled surface magnetic
field may originate from the initial conditions or accuracy of
the numerical schemes. In our case, the output of the SFT
model is an “exact” numerical solution of a partial differential
equation within the limit of our numerical discretization
scheme, which does not have any uncertainties. However, in
the case of direct magnetic field observations, there can be
associated uncertainties. Therefore we explore a parameter
space of different error variances associated with the true
observations. For this study, we choose an assimilation cadence

Figure 4. Axial DM from HMI observations and the SFT model. The blue
solid line denotes the DM time series calculated using HMI observations
(butterfly diagram) and the red line indicates a similar calculation for the SFT-
modeled magnetic field. A Pearson correlation coefficient value of 0.97
between the HMI- and SFT-modeled axial DM indicates that the numerical
model performs very well.

7

The Astrophysical Journal, 975:288 (12pp), 2024 November 10 Dash et al.



of 60 days and an ensemble size of 20. We run our DA
experiment for relative error variance values of 10−6, 10−4,
10−3, and 10−2. Figure 8 shows a comparison between the
perfect model observations and the reconstructed observations
along with the state vectors for different cases of error variance

value. For most of the cases, the reconstruction is reasonably
good with minor deviation from the perfect model. Since the
ensemble of state vectors for the assimilation process is drawn
from a multivariate Gaussian distribution, the algorithm shows
an oscillatory pattern around the true state before finally
converging, as highlighted by the inset plot in Figure 8(c). In
Figure 9 we plot the final ensemble mean value of the state
vector at the end of the DA experiment. In all cases, the
inferred meridional peak flow speed from our DA experiment is
close to the true state value; the maximum difference is less
than 1 m s−1. The assimilation cadence chosen here is 60 days.
We intentionally choose this assimilation cadence to highlight
the fact that even though there are fewer observations available
to assimilate, the degree of error associated with those
observations can modify the inferred state vector.

3.3. Impact of Different Ensemble Sizes on Data Assimilation

In our data assimilation scheme, the size of the ensemble is
one of the controlling parameters that can impact the robustness
of the assimilation process. On one hand, in order to produce a
meaningful reconstruction the size should not be too small. On
the other hand, the size of the ensemble plays a key role in the
effective use of computational resources, as the forward
operator has to compute the observations for a given state
vector. J. L. Anderson (2010) shows that choosing a larger
ensemble size does not necessarily improve the assimilation
results. For our DA experiment, we explored the impact of

Figure 5. True observations, reconstructed observations, and state vectors are plotted for different assimilation cadences. (a) Perfect model observations (magnetic
field at 60°N latitude) for different assimilation cadence intervals. (b) Reconstructed magnetic field at 60°N when the meridional flow is iteratively “nudged” toward
the true state vector (peak meridional flow speed). (c) Evolution of peak meridional flow speed (state vector) for these cases where the variable is approaching the
parameter value of the perfect model calculation. The solid black line indicates the outputs from the original SFT model and the different colors correspond to various
assimilation cadences. Note that for very high (more than 150 days) and very low (less than 10 days) assimilation cadences, the state vector values do not converge
toward the true state. State vectors for assimilation cadences of 180 days and 200 days are rescaled to fit in the plot.

Figure 6. Ensemble mean of the state vector at the end of the DA experiment
for different assimilation cadences. The horizontal axis denotes the different
cadence values and the vertical axis indicates the value of the ensemble mean
of state vectors at the end of the DA experiment. It is essential to choose an
appropriate value of data assimilation frequency in order to correctly
reconstruct the observations. The black dashed curve depicts the true state
value for reference.
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different ensemble sizes, e.g., 2, 5, 10, 15, 20, 25, 40, 60, and
70. Figure 10 shows a comparison between the perfect model
and the reconstructed observations along with the state vectors
for computations with different ensemble sizes. We have
chosen an assimilation cadence of 60 days and an error
variance of 10−6 for this study. In all the cases, initially the
algorithm produces state vectors that oscillate around the true
state before converging with minor deviations from the perfect
model. In Figure 11, we plot the final ensemble mean value of
the state vector at the end of the DA experiment. Here the black
dashed curve denotes the true state for reference. As we
increase the ensemble size the assimilation result seems to
improve while saturating toward the end. In our DA
experiment, we have prior knowledge of the true state
parameter (i.e., the peak meridional flow speed); however,
when such an assimilation technique is applied to observations
of the magnetic field to extract the peak meridional flow speed,
the choice of a suitable ensemble size is crucial for meaningful
interpretation of the results. The difference in the state vector
for ensemble size 40 is only 0.04 m s−1, which does not
significantly alter the modeled magnetic field. However, we
believe that for an assimilation process involving multi-
dimensional spatial reconstruction of global flow character-
istics, such a degree of sensitivity of the algorithm will be
helpful.

4. Discussion and Conclusion

In this study, we utilized the SFT model to infer the peak
meridional flow speed within a data assimilation framework of
EnKF. For this purpose, we developed a longitudinally
averaged SFT model experiment and evolved the model for
≈14 yr. In order to check the accuracy of the SFT evolution,
we compared the axial dipole moment from our model to the
HMI observations. We noticed that adjusting the DA
parameters, e.g., assimilation cadence, the error associated
with the perfect model can modify the reconstruction of the
observations.
Direct observation of the photospheric magnetic field has its

challenges (e.g., for high latitudes and the far side), but these
measurements are essential for driving global coronal models
(J. A. Linker et al. 1999; C. J. Schrijver & M. L. De Rosa 2003;
C. J. Schrijver et al. 2013; B. van der Holst et al. 2014;
J. T. Hoeksema et al. 2020), solar wind simulations (M. J. Owens
et al. 2017), reconstruction of three-dimensional inner heliospheric
states (M. J. Owens & R. J. Forsyth 2013), and space weather
applications (C. N. Arge & V. J. Pizzo 2000). The polar fields are
difficult to measure accurately, but are particularly important for
solar cycle prediction studies (J. Jiang et al. 2010; L. Upton &
D. H. Hathaway 2014; P. Bhowmik & D. Nandy 2018). Global
surface-flow characteristics play an important role in modulating

Figure 7. Data assimilation with an assimilation frequency of 1 day. True observations (magnetic field at 60°N latitude ), reconstructed magnetic fields in red solid
line, and the variation in the peak meridional flow speed are plotted in panels (a), (b), and (c), respectively. Such a high assimilation cadence does not provide
appropriate relaxation time to the forward operator; hence the resulting reconstruction deviates from the perfect model. The inset plot in (c) denotes the first 50 days of
the assimilation process indicating the oscillatory behavior around the true state (dashed black curve) before approaching the true state. Such oscillations are found for
all the cases of the DA experiment.
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the polar fields. This warrants the usage of SFT simulations
constrained with available magnetic field observations—utilizing
the theoretically modeled flow distribution that best matches the
measurements—to produce true global photospheric magnetic field
distributions that include polar field estimates. Apart from the
global flow characteristics, the active region flux and the mid-
latitude poleward flow speed show a negative correlation, which
might be attributed to the field-dependent converging flow toward
flux concentrations (X. Sun et al. 2015). This firmly establishes the

requirement for techniques to infer the flow characteristics from
observational proxies.
Utilizing our EnKF+ SFT method, we are able to constrain

the surface-flow properties with magnetic field measurements,
which will improve the current global surface flux distribution
modeling efforts. Therefore, we built an OSSE setup where one
of the flow parameters, the peak meridional flow speed, is
estimated from synthetic observations of magnetic fields.
Several control parameters within the assimilation frame-

work can be adjusted to improve the assimilation process.
When such an algorithm is applied to a system of observed
magnetic fields, there are constraints on the observation
cadence (e.g., Carrington maps of magnetic fields are only
available at a cadence of 28 days) and sometimes there are data
gaps from the observing stations. With the EnKF setup, we can
assimilate available observations having different or irregular
cadences without compromising the reconstruction process. It
is important to note that the forward operator (SFT model in
our case) requires sufficient time to relax. Hence, if the flow
properties are modified within a shorter timescale (e.g., each
day) it will lead to inconsistent results. This is known as
ensemble collapse as illustrated in Figure 7. Hence the optimal
assimilation cadence varies depending upon the properties of
the forward operator. Apart from the assimilation cadence, we
can also control the reconstruction process for different degrees
of error associated with the observations. The algorithm also
provides further constraints in terms of ensemble size for
computing the state vector. In our experiment, the EnKF
algorithm reconstructs the state vector within the first few

Figure 8. Probable variation in the error associated with the perfect model and its implications for the reconstruction process. We have chosen an assimilation cadence
of 60 days and an ensemble size of 20 for this experiment. Panel (a) shows the perfect model observations, i.e., magnetic fields at 60°N latitude for different error
variance values while (b) denotes the reconstructed observations. In panel (c), we plot the corresponding state vectors for different error variance values. We notice a
deviation in the reconstruction from the perfect model when the associated error variance is higher. The inset plot highlights the initial oscillatory pattern of the state
vectors for different experimental cases before converging toward the true state (denoted by the solid black curve).

Figure 9. Ensemble mean value of the state vector at the end of the DA
experiment for different error variances. The assimilation cadence is chosen to
be 60 days and the ensemble size is 20 for this experiment. DA experiment is
sensitive to the degree of error associated with the perfect model. The black
dashed curve shows the true state value for reference.
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months of simulation where the impact of the choice of
ensemble size on the assimilation process is amplified. The
final values of the state vector corresponding to different
experiment cases show negligible deviation from the true state.
However, the SFT-generated magnetic fields for different such
choices still closely track the perfect model output. We believe,
for a global flow reconstruction, such minor changes (e.g., for
the case of ensemble size 40 in Figure 11) may impact the
modeling of magnetic field distribution locally.

Provided the versatility of the EnKF technique, usage of the
same within the solar physics community has not been widely
explored. These tools have been employed by various authors
in a few contexts, such as solar cycle prediction, parameter
reconstruction, and estimating solar wind properties (M. Dikp-
ati et al. 2016; I. N. Kitiashvili 2016; M. Lang et al. 2017).
However, a golden era for data assimilation in solar models is
coming soon. In a recent ground-breaking effort, H. Turner
et al. (2023) demonstrated that EnKF assimilation of near-real-
time solar wind data into the Wang–Sheeley–Arge (WSA)
model can improve the 5 days lead-time forecast by 15% if L5
data are included in the assimilation along with L1 data.
The versatility and applicability of the EnKF technique

across a range of scientific and practical problems demonstrates
its effectiveness and calls for ongoing development in these
areas. Nevertheless, the method does have several limitations.
The EnKF assumes that the distributions of the forecast and
observational errors are Gaussian, which can be a significant
limitation when dealing with non-Gaussian processes. With a
limited ensemble size, the EnKF can suffer from sampling
errors, which can lead to inaccurate estimates of the state and
error covariances. To improve the accuracy, a large ensemble
size can be used, but then the EnKF can be computationally
expensive, especially for large-scale systems, because it
requires the integration of a large number of ensemble
members through the model. Two assumptions in the EnKF
tool, namely, (i) the model is “perfect” (i.e., all physics are
sufficiently included to reproduce the observations) and (ii) the
covariance coefficients of the state vectors are considered to be

Figure 10. Reconstruction using different ensemble sizes. We have chosen an assimilation cadence of 60 days and an error variance of 10−6 for this experiment. (a)
Perfect model observations, i.e., magnetic field at 60°N latitude with varying ensemble sizes. (b) Reconstructed magnetic fields after the DA experiment for respective
ensemble sizes. (c) Corresponding evolution of state vectors, i.e., the peak meridional flow speed as they approach toward the true state. Although the assimilation
cadence is 60 days, increasing ensemble size improves the reconstructed observations. In the inset plot shown in the bottom panel, we plot the initial iterations of the
DA experiment showing the oscillatory pattern of the state vectors around the true state (denoted by the solid black curve).

Figure 11. Ensemble mean value of the state vector at the end of the DA
experiment for different ensemble sizes. The assimilation cadence is chosen to
be 60 days and the error variance is 10−6 for this experiment. The final state
vector approaches the true state for a larger ensemble size even for a higher
assimilation cadence. The black dashed curve denotes the true state value for
reference.
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linearly independent, may lead to inaccuracies in a highly
nonlinear system (A. Carrassi et al. 2018).

In this paper, we demonstrated the successful implementa-
tion of the EnKF algorithm with an SFT model with a
parameterized meridional flow profile. In future work, we plan
to explore the usage of our technique to infer two-dimensional
spatiotemporal descriptions of the global flows on the photo-
sphere inferred from the magnetic field observations.
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