--- bibliography: - assets/references.bib title: Surface Flux Transport Model User Manual --- # Theoretical background ## Magnetic field evolution on the solar surface The surface flux transport (SFT) model, which solves the radial component of the magnetic field on the solar/stellar surface, has demonstrated remarkable effectiveness in simulating the dynamics of the large-scale magnetic field on the solar photosphere. The governing equation can be written as, ```{math} \frac{\partial B_r}{\partial t} + \frac{1}{R_\odot \sin\theta} \frac{\partial}{\partial \theta} \!\left( \sin\theta\, u_\theta B_r \right) + \Omega(\theta) \frac{\partial B_r}{\partial \phi} = \frac{\eta}{R_\odot^2 \sin\theta} \frac{\partial}{\partial \theta} \!\left( \sin\theta\, \frac{\partial B_r}{\partial \theta} \right) + \frac{\eta}{R_\odot^2 \sin^2\theta} \frac{\partial^2 B_r}{\partial \phi^2} + S. ``` where {math}`\eta` is the magnetic diffusivity, {math}`\Omega (s)` is the angular velocity in east-west direction on a uniform latitude grid, {math}`u_\theta` is the flow profile along north-south direction on a latitude grid and {math}`\phi` is the longitude. The velocity profiles involved in transporting the magnetic flux on the photosphere is a function of latitude only. The flux from newly emerging sun/star spots are coupled to the model via an ad-hoc source term {math}`S`. ```{figure} flows.png :height: 70 % :width: 70 % :align: "center" :alt: Meridional flow profile Example meridional flow profile. ``` ## Bipolar Magnetic Region (BMR) Flux Injection — Theoretical Explanation Here is how we model the **bipolar magnetic region (BMR) source term** in our SFT simulation. It describes how a pair of magnetic polarities (leading and following) is injected on the solar/stellar surface, following **Joy’s law** tilt and **Hale’s polarity law**. The resulting field is a **normalized radial magnetic field distribution** representing the emergence of one BMR with a specified total flux and geometric configuration. --- ### 1. Mesh and Area Elements The surface of the Sun is represented using a **spherical grid**: ```{math} \theta \in [0, \pi], \quad \phi \in [0, 2\pi) ``` The **surface element** on a sphere of radius \( R_\odot \) is: ```{math} dA = R_\odot^2 \sin\theta \, d\theta \, d\phi ``` This is used to compute total flux over the spherical surface. --- ### 2. Convert Center Location The central location of the bipole in latitude {math}`\lambda` and longitude {math}`\phi` is converted to **colatitude**: ```{math} \theta_0 = \frac{\pi}{2} - \lambda, \quad \phi_0 = \phi \mod 2\pi ``` The corresponding unit vector on the sphere is: ```{math} \mathbf{r}_0 = \begin{bmatrix} \cos\lambda \cos\phi \\ \cos\lambda \sin\phi \\ \sin\lambda \end{bmatrix} ``` --- ### 3. Local Tangent Basis At the emergence center, a **local tangent plane** is defined using orthonormal vectors: ```{math} \mathbf{e}_\phi = \begin{bmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{bmatrix} , \quad \mathbf{e}_\theta = \begin{bmatrix} -\sin\lambda \cos\phi \\ -\sin\lambda \sin\phi \\ \cos\lambda \end{bmatrix} , \quad \mathbf{e}_\lambda = - \mathbf{e}_\theta ``` - {math}`\mathbf{e}_\phi` → eastward direction - {math}`\mathbf{e}_\lambda` → northward direction --- ### 4. Tilt and Separation The **tilt angle** {math}`\alpha` defines the orientation of the bipole line relative to the local east-west direction: ```{math} \mathbf{s} = \cos\alpha \, \mathbf{e}_\phi + \sin\alpha \, \mathbf{e}_\lambda ``` The **leading** and **following polarity centers** are positioned symmetrically along the separation vector: ```{math} \mathbf{r}_\text{lead} = \mathbf{r}_0 + \frac{\Delta}{2} \mathbf{s}, \quad \mathbf{r}_\text{foll} = \mathbf{r}_0 - \frac{\Delta}{2} \mathbf{s} ``` where {math}`\Delta` is the angular separation (in radians). --- ### 5. Convert to Spherical Coordinates The 3D vectors are converted back to spherical coordinates: ```{math} \theta = \arccos\left(\frac{z}{|\mathbf{r}|}\right), \quad \phi = \arctan2(y, x) \mod 2\pi ``` --- ### 6. Polarity Signs (Hale’s Law) The polarity signs are determined according to hemisphere: ```{math} (\text{sign}_\text{lead}, \text{sign}_\text{foll}) = \begin{cases} (+1, -1), & \lambda > 0 \text{ (northern hemisphere)} \\ (-1, +1), & \lambda < 0 \text{ (southern hemisphere)} \end{cases} ``` Optionally, Hale’s law can be disabled and the leading polarity is set positive. --- ### 7. Gaussian Field Distribution Each polarity is modeled as a **2D Gaussian** on the sphere: ```{math} B_i(\theta, \phi) = s_i \exp\left[ -\frac{(\theta - \theta_i)^2 + \Delta\phi^2(\phi, \phi_i)}{2\sigma^2} \right] ``` where: ```{math} \Delta\phi(\phi, \phi_i) = \min\left(|\phi - \phi_i|, 2\pi - |\phi - \phi_i|\right) ``` - {math}`\sigma` → angular width of the polarity - {math}`s_i = \pm 1` → polarity sign The **combined unscaled radial field** is: ```{math} B_\text{unit}(\theta, \phi) = B_\text{lead}(\theta, \phi) + B_\text{foll}(\theta, \phi) ``` --- ### 8. Flux Normalization Compute the total unsigned flux: ```{math} \Phi_\text{unit} = \sum |B_\text{unit}| \, dA ``` Scale the field to match the specified total flux \( \Phi \): ```{math} S = \frac{\Phi}{\Phi_\text{unit}} ``` The **normalized radial field** is then: ```{math} B_r(\theta, \phi) = S \, B_\text{unit}(\theta, \phi) ``` ensuring: ```{math} \int |B_r(\theta, \phi)| \, dA = \Phi ``` --- ### 9. Final Equation The normalized radial magnetic field of the bipole is: ```{math} B_r(\theta, \phi) = \frac{\Phi}{\sum |B_\text{unit}| \, dA} \left[ s_\text{lead} e^{- \frac{(\theta - \theta_\text{lead})^2 + \Delta\phi^2(\phi, \phi_\text{lead})}{2\sigma^2}} + s_\text{foll} e^{- \frac{(\theta - \theta_\text{foll})^2 + \Delta\phi^2(\phi, \phi_\text{foll})}{2\sigma^2}} \right] ``` This is the **mathematical representation of the BMR source term** used in surface flux transport simulations. --- ### 10. Summary - Represents **idealized BMR emergence** on the solar surface. - Incorporates **Joy’s law tilt** and **Hale’s law polarity orientation**. - Normalized to ensure the **total unsigned flux** equals the specified value. - Provides a **smooth Gaussian representation** suitable for numerical simulations. ```{figure} example_bmr.png :height: 70 % :width: 70 % :align: "center" :alt: example modeled BMR Example modeled BMR. ```